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1. INTRODUCTION

Let f be a function defined on the interval [0, o). The Szasz—Mirakyan
operator S,(f, x) is defined as follows:

S,fx)=Y flkin) p(nx),  pelt)=e~ "4k (L1)
k=0

Several authors (see [1-3]) studied the convergence of the operator (1.1).
Recently, Fuhua Cheng [4] established an estimate of the rate of con-
vergence for functions of bounded variation on every finite subinterval of
[0, o0) and proved that if () = O(*'}(t — o) for some o >0, then

19,0/, )~ (1/2)(f(x + )+ f(x =)
<G+0nx) Y Vga [x— xSk x—x/ /&)
k=1

+0(1//nx)

X (Lf(x+) = flx =)l + (4x)** (e/4)™), Vxe(0,0), (12)
where V{(g, [a, b]) is the total variation of g on [a, b] and

SO~ f(x+), x<t<oo
gx(t):= 09 I=x
fW—-f(x-), 0<t<x
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In a seminar lecture Meiqgin Wang gave the rate of convergence of the
Bernstein operator by means of a sequence of pointwise moduli of con-
tinuity improving Cheng’s result [5]. The author [6] generalized Cheng’s
result (1.2) for the function of bounded variation of order p>1 (BV,) and
established an estimate for f'(x) € BV, on every finite subinterval of [0, «0).

In this paper we consider the class of functions B® which is larger than
the class of functions of generalized bounded variation

B ={f|f""VeC[0, ), f4(x) exist everywhere and are
bounded on every finite subinterval of [0, o) and
fO(t)= 0@}t - ) for some a>0} (r=0, 1, ..),

where fQ)(x) means f(x + ).
We shall prove that for f e B®

1Sa(fs %) = (172)(f D (x) + f7x))
<(T3AxYn) S wolJAEYK) + 73 /Ay w(x+3)
+0(e +k|;:;>(x) = PO/ +/nx)), (1.3)
where w. (1) =w,(h,, t) =sup{|h,(x +5) = h,(x)|, |s| <t} and

) — fOAx), x<t<0
h(x):= (0, t=x- (1.4)
fO>)—fDx),  0<i<x
It is clear that if g is of A-bounded variation [7], then
wx(g’ t)< VA(g5 [X— Lx+ t])
If g is continuous on [a, b] and x€ [a, b] then

wdg t)<w(g 1), (1.5)

where (g, t) is the usual modulus of continuity. Hence, our estimate (1.3)
includes results for the function of generalized bounded variation and
continuous functions. Unfortunately, our other estimate for f € B,

SO/, x)— £Ox)] < (21 A(x)/m)
xS Ak w /AN K) + (3/2)
k=1
% /AR |fC+ () = £+ D(x)| + O(1/n),
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does not include the case f' € Lip 1 on every finite subinterval of [0, o). In
that case we only obtain

SIS, x) = f7(x) = O(log n/n).

This degree is worse than the usual degree 1/n. Therefore, the question on
finding a unified estimate that includes the case f' e Lip 1[0, A] remains
open.

2. THEOREMS

Now we state our main results as follows.
THEOREM 1. If fe B®™ (r= {0} UN), then for n>3+4r%,
IS O, x)— 1/2)(fDx) + fFO(x))

< (73 4(x)/n) Z w (/A(x)/k)+ T3 /A(x)/n w(x+3)
+0(e™" + | [O(x) — FOCN/(1 +/nx)),

where the sign “O” is independent of [ and n but depends on x and o and
w, (t)=w,(h,, t) is the pointwise modulus of continuity of h, at x and h, is
defined by (1.4), 4(x)=max{l, x}.

THEOREM 2. If f € B, then for xe [0, A] (A >0) and n> 4r* we have

ISO(f, x)~ £ < QLAY Y wals/A)K) /Ax)k

+G/2) 1f 5+ ) = £ D(x))
x /4(x)/n+ O(1/n),
where the sign “O” is independent of x, n, and f but depends on o and A.

From Theorem 1 and Lemma 2 in Section 3, observing (1.5), we obtain
the following corollaries.

CoroLLARY 1. If feC[0,4] (A>0) and f=0(t*) for some a>0,
then

IS x) = £ X)) = O(w2.4(1//n))
holds uniformly on [0, A], where
w4 ()=w4f 1)
=sup{|f(x)— f(¥)l, Ix—yI<t,x, ye [0, 4]}.
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If r=0, this Corollary is a Theorem of Hermann [3].

COROLLARY 2. If fis of A-bounded variation on every finite subinterval
of [0, ) and f=O(t*)t - ) for some a >0, then for x € (0, )

ISO(f, x) = (172)(f Dx) + S 2(x))]

<3 AYn) S Valh,, [x— Ak, x+/Ax)k])

+ 73V ((h,, [0,2x+3])/A(x)/n
+0(e "+ | fOx)— fO)/(1 +/nx)).

3. LEMMAS AND PRELIMINARIES

In order to prove the above theorems we need the following lemmas.

LemMA 1. Iff"~ Ve Cla, b] and f)(x) exist everywhere on [a, b}, then
FOCe+ 0,y < 45 f(x) < fO(x + 0,0k}, 0<8,,0,<1, (3.1)
where the difference of order r is defined by
Af(x)=4, f(x)= f(x+h)— f(x) and 47f(x) = 4}, f(x) = 44" 'f (x)).

Proof. On using the method of mathematical analysis it is not difficult
to prove the lemma for the case r=1. For r>2, using the mean value
theorem we have

Af(x)=4"""(f(x+h)— f(x))
=[f""Yx+h+0(r—1)h)
—fUD(x+0(r—1)h) A ! 0<8' <1).
Applying the known result for r=1, we obtain (3.1).

LEMMA 2. For every x e [0, o) there exist constants ¢ >0 and N= N(x)
such that

Y (k) " pi(nx)<e (3.2)
kinz2(x+1)

provided n > N(x). For the interval [0, A] (A > 0) there exist constants ¢ >0
and N independent of x such that (3.2) holds uniformly for n>= N.
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For the proof we can follow the method of Hermann [3].
The following results are known (see [4]):

Y pulnx)<x/[n(x—1)*], O<t<x (3.3)

k<nt

Y pnx)<x/[n(x—1)*], x<t<2x+1), (34)

kz=nt

A,(x)= Y pulnx)=1/2+0(1/(1 +/nx)), (3.5)

k=znx

B (x)= Y pu(nx)=1/2+0(1/(1 +/nx)). (3.6)

k<nx

4. PROOF

We only prove Theorem 2, since the proof of Theorem 1 is similar.

Proof of Theorem 2. In view of Lemma 1 and the fact that if A< T < B
and max{|A4|, |B|} <C, then |Z| < C, without loss generality, it is sufficient
to estimate the right side of the inequality.

Let m be a nonnegative integer such that m/n<x <(m+1)/n, and let
§ = (4(x)/n)'"?, A(x)=max{l, x}. Write

SO, x) = f7(x)

=Y [n 47, flk/n)— fO(x)] pilnx)

k=0

= 3 I A fkin) = FOUx) + LT D) x— kfn)] paln)

+ i [n" 4" f(k/n) — fO(x) + £ x)(x = k/n)] pilnx)

k=m+1

+(1/2)(f 5 x) = [ D(x)) i |x ~k/n| py(nx)

k=0
=Y +Y, +Y. (4.1)
It is easy to see that

2| SW2) 1f D) = £ D) (x/m)' 2 (4.2)
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In order to estimate 3 ; we write again

2= )3 + Y =Y 4T, 43

O0<k/n<x—38+ (1/n) x—8+ (lI/my<sk/n<m/n

Using Lemma 1 we have

Yu= 2. [fO((k + rB)/n)

Ogkn<x—8+1/n
— fOx)+ £ Dx)(x — k/n)] pi(nx)

< > LA D) = £ D(x) Jx — k/n) pi(nx)

Ogskin<x—56+1/n

+ ) S k) palnx) rf/n

O<k/n<x—356+1/n

< ) w(x —k/n)(x —k/n) pi(nx)

Osk/n<x—46+1/n

+ (Mr/n) Y Pi(nx), (4.4)

Ogk/n<x—86+1/n

where M =supyc,<oc43 [fCH ()], k/n< &, <x and 0<6 <1 but not the
same at each occurrence.
Applying Abel transformation and (3.5), we obtain

> w(x — k/n)(x —k/n) py(nx)

O<k/n<x—6+1/n

< 6w (0) > pi(nx)+ (x/n)

Ogk/in<x—86+1/n

X Y [w(x—k/n)(x—k/n)

O<km<x—34

—w(x = (k+1)/n)(x — (k + 1)/m) (x — k/n) 2

<V AX)nw JAx)yn) Y Pilnx)—w(x)/n

O<k/n<x—8+1/n

+ (2x/n) Yy w (x —k/n)(x—k/n) "% (4.5)

t/ngsk/in<x—20d
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It is easy to verify that if n> 3,

(2x/n) Y, w (x—k/n)(x —k/n)=?2

i/m<kin<x—34

<(8x/n) f: w(6)1~2 dt

— (4x/n) Ll//a: INERNER

<(4x/n)[i W/ 2X)F) JA(x)/k+wx(x)], (46)

k=1

A substitution of (4.5), (4.6) into (4.4) yields

S| <o+ 1yn i) 32wl JAT) /AR

+ (/A(x)n w(/A(x)/n) + Mr/n)

X Y Di(nx). (4.7)

O<kin<x—d+1/n
Now turn to the estimation of >°,,. Write

Y= ) + ) = Z;2+Zl1’2‘ (4.8)

x—86+1/ngk/n<(m—rin (m—r+1)n<k/n<min
Obviously

<(w(8) 8 + Mr/n) Y. Pr(nx). (4.9)

x—d+1/n<kin<(m—r)/n

s

Let
Je(x) = Lk + r8)/n) ~ fO(x)
+ fOO(x)x—k/n)] pu(nx)  (m—r+1<k<m):
(i) I (k+ro)/n<x,
Tex) ST FOrD(E) = £ ()] |x ~k/n
X pp(nx) + fCFD(EL) pilnx) rb/n
< [V AX)nw(JA(x)/n) + rM/n] pi(nx).
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(ii) If x < (k +rB)/n, then

Tex) < {1f (&) — £+ D) |x — K/l
+ 15 Dx) = £+ O(x)| |x —k/nl
+ 0 NE) r8/n} pilnx)
< {VA(x)/n w /A(x)/n) + rM/n
+ /A | £ (x) = fEED0x0] ) pelnx).

Hence

< (VA(x)n w (/A(x)/n) + rM/n) y Pilnx)
(m—r+i/n)y<k/nsmin

+/A4x)/n | fE0(x) = [ D) (4.10)

Combining (4.8)-(4.10) we get
Y | S (SA0x)n w (S/A(x)/n) + rM/n) y Pil(nx)
x—8+ l/ngkin<m/n

+/4@)/n | f5 0 0x) = fUr D) (4.11)

From (4.3), (4.7), and (4.11) it follows that

5,

=,

<W@x/n) Y. wl/ACNK) /AR 4w (x)(dx + 1)

+(JAx)nw (JAx)n)+rM/n) Y pi(nx)

+/ A fGD(x) = fOr Dx). (4.12)

Now consider Y ,. Write

X, = ) + ) + X

(m+1)ngkn<x—56—(r+1)/n x+0—(r+1)n<k/in<2(x+1) 2(x+ 1)< k/n
=Y Dt D (4.13)
It is evident that

221

< (Wly/A(x)/n) /A(x)/n + rM/n) )) Pilnx)

(m+1lYn<k/in<x+d—(r+1)/n

(4.14)
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Similarly, if n > 4r?,

Y,| <(16x/n) 2 W/ A(x)/k) /A(x)/k +w (x + 3)(64x + 1)/n
k=1
+ (wo(+/4(x)/n) \/A(x)/n+rM/n) Y Pulnx).
x+d—(r+1)yn<k/ng2(x+1)
(4.15)
Applying Lemma 2, we have
¥, =0(e~). (4.16)

Combining (4.13)-(4.16), we get

|22’ < (16x/n) Z w S A(x)k) S A(x)/k +w.(x +3)(64x + 1)/n
k=1

+ (WS A(x)/n) \/A(x)/n+ rM/n)

X Y pr(nx)+ O(e™"). (4.17)

(m+1)/n<k/n<2(x+1)

Finally, collecting (4.1), (4.2), (4.12), and (4.17), we obtain

Zl‘ +(2, <w(/A(x)/n) /A(x)/n+rM/n

+

X

+Q0x/) 3wl JAGYR) AV

+w, (x + 3)(68x + 2)/n + (3/2) /A(x)/n
X |fGHD(x) = fUrDx)] + O(e ™)

<Q1A()n) 3wl SAVK) Ak
k=1
+(3/2) /A | £+ Dx) = £ D (x)| + O(1n)

‘Observing Lemma 2, here the sign “O” is independent of x, n, and f on the
interval [0, 4]. QE.D.

640/55/3-4
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