On the Simultaneous Approximation of Functions and Their Derivatives by the Szász-Mirakyan Operator*

XIEHUA SUN[†]

Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang, People's Republic of China

Communicated by R. Bojanic

Received January 2, 1986

1. Introduction

Let f be a function defined on the interval $[0, \infty)$. The Szász-Mirakyan operator $S_n(f, x)$ is defined as follows:

$$S_n(f, x) = \sum_{k=0}^{\infty} f(k/n) \ p_k(nx), \qquad p_k(t) = e^{-t} t^k / k!. \tag{1.1}$$

Several authors (see [1-3]) studied the convergence of the operator (1.1). Recently, Fuhua Cheng [4] established an estimate of the rate of convergence for functions of bounded variation on every finite subinterval of $[0, \infty)$ and proved that if $f(t) = O(t^{\alpha t})(t \to \infty)$ for some $\alpha > 0$, then

$$|S_{n}(f,x) - (1/2)(f(x+) + f(x-))|$$

$$\leq (3+x)/(nx) \sum_{k=1}^{n} V(g_{x}, [x-x/\sqrt{k}, x-x/\sqrt{k}])$$

$$+ O(1/\sqrt{nx})$$

$$\times (|f(x+) - f(x-)| + (4x)^{4\alpha x} (e/4)^{nx}), \quad \forall x \in (0, \infty), \quad (1.2)$$

where V(g, [a, b]) is the total variation of g on [a, b] and

$$g_x(t) := \begin{cases} f(t) - f(x+), & x < t < \infty \\ 0, & t = x \\ f(t) - f(x-), & 0 \le t < x. \end{cases}$$

^{*} This research was supported by the Science Fund of the Chinese Academy of Sciences.

[†] Present address: Department of Applied Mathematics, China Institute of Metrology, Hangzhou, PRC.

280 XIEHUA SUN

In a seminar lecture Meigin Wang gave the rate of convergence of the Bernstein operator by means of a sequence of pointwise moduli of continuity improving Cheng's result [5]. The author [6] generalized Cheng's result (1.2) for the function of bounded variation of order $p \ge 1$ (BV_n) and established an estimate for $f'(x) \in BV_p$ on every finite subinterval of $[0, \infty)$.

In this paper we consider the class of functions $B_r^{(\alpha)}$ which is larger than the class of functions of generalized bounded variation

$$B_r^{(\alpha)} = \left\{ f \mid f^{(r-1)} \in C[0, \infty), \ f_{\pm}^{(r)}(x) \text{ exist everywhere and are bounded on every finite subinterval of } [0, \infty) \text{ and } f_{\pm}^{(r)}(t) = O(t^{\alpha t})(t \to \infty) \text{ for some } \alpha > 0 \right\} \ (r = 0, 1, ...),$$

where $f_{\pm}^{(0)}(x)$ means $f(x \pm)$. We shall prove that for $f \in B_r^{(\alpha)}$

$$|S_n(f, x) - (1/2)(f_+^{(r)}(x) + f_-^{(r)}(x))|$$

$$\leq (73 \Delta(x)/n) \sum_{k=1}^n w_x(\sqrt{\Delta(x)/k}) + 73 \sqrt{\Delta(x)/n} w_x(x+3)$$

$$+ O(e^{-cn} + |f_-^{(r)}(x) - f_-^{(r)}(x)|/(1 + \sqrt{nx})), \tag{1.3}$$

where $w_x(t) = w_x(h_r, t) = \sup\{|h_r(x+s) - h_r(x)|, |s| \le t\}$ and

$$h_r(x) := \begin{cases} f_+^{(r)}(t) - f_+^{(r)}(x), & x < t < 0 \\ 0, & t = x \\ f_-^{(r)}(t) - f_-^{(r)}(x), & 0 \le t < x. \end{cases}$$
 (1.4)

It is clear that if g is of Λ -bounded variation [7], then

$$w_x(g,t) \leq V_A(g, [x-t, x+t]).$$

If g is continuous on [a, b] and $x \in [a, b]$ then

$$w_x(g, t) \leq \omega(g, t), \tag{1.5}$$

where $\omega(g, t)$ is the usual modulus of continuity. Hence, our estimate (1.3) includes results for the function of generalized bounded variation and continuous functions. Unfortunately, our other estimate for $f \in B_{r+1}^{(\alpha)}$,

$$|S_n^{(r)}(f,x) - f^{(r)}(x)| \le (21 \Delta(x)/n)$$

$$\times \sum_{k=1}^n \sqrt{\Delta(x)/k} \, w_x(\sqrt{\Delta(x)/k}) + (3/2)$$

$$\times \sqrt{\Delta(x)/n} \, |f_x^{(r+1)}(x) - f_x^{(r+1)}(x)| + O(1/n),$$

does not include the case $f' \in \text{Lip } 1$ on every finite subinterval of $[0, \infty)$. In that case we only obtain

$$S_n^{(r)}(f, x) - f^{(r)}(x) = O(\log n/n).$$

This degree is worse than the usual degree 1/n. Therefore, the question on finding a unified estimate that includes the case $f' \in \text{Lip } 1[0, A]$ remains open.

2. Theorems

Now we state our main results as follows.

THEOREM 1. If
$$f \in B_r^{(\alpha)}$$
 $(r = \{0\} \cup \mathbb{N})$, then for $n \ge 3 + 4r^2$,
$$|S_n^{(r)}(f, x) - (1/2)(f_+^{(r)}(x) + f_-^{(r)}(x))|$$

$$\leq (73 \Delta(x)/n) \sum_{k=1}^n w_x(\sqrt{\Delta(x)/k}) + 73 \sqrt{\Delta(x)/n} w_x(x+3)$$

$$+ O(e^{-cn} + |f_+^{(r)}(x) - f_-^{(r)}(x)|/(1 + \sqrt{nx})),$$

where the sign "O" is independent of f and n but depends on x and α and $w_x(t) = w_x(h_r, t)$ is the pointwise modulus of continuity of h_r at x and h_r is defined by (1.4), $\Delta(x) = \max\{1, x\}$.

THEOREM 2. If $f \in B_{r+1}^{(\alpha)}$ then for $x \in [0, A]$ (A > 0) and $n \ge 4r^2$ we have

$$|S_n^{(r)}(f,x) - f^{(r)}(x)| \le (21 \Delta(x)/n) \sum_{k=1}^n w_x(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k} + (3/2) |f_+^{(r+1)}(x) - f_-^{(r+1)}(x)| \times \sqrt{\Delta(x)/n} + O(1/n),$$

where the sign "O" is independent of x, n, and f but depends on α and A.

From Theorem 1 and Lemma 2 in Section 3, observing (1.5), we obtain the following corollaries.

COROLLARY 1. If $f \in C[0, A]$ (A > 0) and $f = O(t^{\alpha t})$ for some $\alpha > 0$, then

$$|S_n^{(r)}(f,x)-f^{(r)}(x)|=O(\omega_{2A}(1/\sqrt{n}))$$

holds uniformly on [0, A], where

$$\begin{split} \omega_A(t) &= \omega_A(f, t) \\ &= \sup \big\{ |f(x) - f(y)|, \, |x - y| \leqslant t, \, x, \, y \in \llbracket 0, \, A \rrbracket \big\}. \end{split}$$

If r = 0, this Corollary is a Theorem of Hermann [3].

COROLLARY 2. If f is of Λ -bounded variation on every finite subinterval of $[0, \infty)$ and $f = O(t^{\alpha t})(t \to \infty)$ for some $\alpha > 0$, then for $x \in (0, \infty)$

$$\begin{split} |S_{n}^{(r)}(f,x) - (1/2)(f_{+}^{(r)}(x) + f_{-}^{(r)}(x))| \\ & \leq (73 \, \Delta(x)/n) \sum_{k=1}^{n} V_{A}(h_{r}, [x - \sqrt{\Delta(x)/k}, x + \sqrt{\Delta(x)/k}]) \\ & + 73 V_{A}(h_{r}, [0, 2x + 3]) \sqrt{\Delta(x)/n} \\ & + O(e^{-cn} + |f_{+}^{(r)}(x) - f_{-}^{(r)}(x)|/(1 + \sqrt{nx})). \end{split}$$

3. LEMMAS AND PRELIMINARIES

In order to prove the above theorems we need the following lemmas.

LEMMA 1. If $f^{(r-1)} \in C[a, b]$ and $f_+^{(r)}(x)$ exist everywhere on [a, b], then

$$f_{+}^{(r)}(x+\theta_1 rh)h^r \le \Delta_h^r f(x) \le f_{+}^{(r)}(x+\theta_2 rh)h^r, \quad 0 < \theta_1, \, \theta_2 < 1, \quad (3.1)$$

where the difference of order r is defined by

$$\Delta f(x) = \Delta_h^1 f(x) = f(x+h) - f(x)$$
 and $\Delta' f(x) = \Delta_h' f(x) = \Delta(\Delta''^{-1} f(x))$.

Proof. On using the method of mathematical analysis it is not difficult to prove the lemma for the case r = 1. For $r \ge 2$, using the mean value theorem we have

$$\Delta' f(x) = \Delta^{r-1} (f(x+h) - f(x))$$

$$= [f^{(r-1)}(x+h+\theta'(r-1)h) - f^{(r-1)}(x+\theta'(r-1)h)]h^{r-1} \qquad (0 < \theta' < 1).$$

Applying the known result for r = 1, we obtain (3.1).

LEMMA 2. For every $x \in [0, \infty)$ there exist constants c > 0 and N = N(x) such that

$$\sum_{k/n \ge 2(x+1)} (k/n)^{\alpha k/n} p_k(nx) \le e^{-cn},$$
 (3.2)

provided $n \ge N(x)$. For the interval [0, A] (A > 0) there exist constants c > 0 and N independent of x such that (3.2) holds uniformly for $n \ge N$.

For the proof we can follow the method of Hermann [3]. The following results are known (see [4]):

$$\sum_{k \le nt} p_k(nx) \le x/[n(x-t)^2], \qquad 0 \le t < x$$
 (3.3)

$$\sum_{k \ge nt} p(nx) \le x/[n(x-t)^2], \qquad x < t \le 2(x+1), \tag{3.4}$$

$$A_n(x) = \sum_{k \ge nx} p_k(nx) = 1/2 + O(1/(1 + \sqrt{nx})), \tag{3.5}$$

$$B_n(x) = \sum_{k \le nx} p_k(nx) = 1/2 + O(1/(1 + \sqrt{nx})). \tag{3.6}$$

4. Proof

We only prove Theorem 2, since the proof of Theorem 1 is similar.

Proof of Theorem 2. In view of Lemma 1 and the fact that if $A \le \Sigma \le B$ and $\max\{|A|, |B|\} \le C$, then $|\Sigma| \le C$, without loss generality, it is sufficient to estimate the right side of the inequality.

Let m be a nonnegative integer such that $m/n \le x < (m+1)/n$, and let $\delta = (\Delta(x)/n)^{1/2}$, $\Delta(x) = \max\{1, x\}$. Write

$$S_{n}^{(r)}(f,x) - f^{(r)}(x)$$

$$= \sum_{k=0}^{\infty} \left[n^{r} \Delta_{1/n}^{r} f(k/n) - f^{(r)}(x) \right] p_{k}(nx)$$

$$= \sum_{k=0}^{m} \left[n^{r} \Delta^{r} f(k/n) - f^{(r)}(x) + f^{(r+1)}(x)(x-k/n) \right] p_{k}(nx)$$

$$+ \sum_{k=m+1}^{\infty} \left[n^{r} \Delta^{r} f(k/n) - f^{(r)}(x) + f^{(r+1)}(x)(x-k/n) \right] p_{k}(nx)$$

$$+ (1/2)(f^{(r+1)}(x) - f^{(r+1)}(x)) \sum_{k=0}^{\infty} |x-k/n| p_{k}(nx)$$

$$:= \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} |x-k/n| p_{k}(nx)$$

$$(4.1)$$

It is easy to see that

$$\left| \sum_{3} \right| \le (1/2) |f_{+}^{(r+1)}(x) - f_{-}^{(r+1)}(x)| (x/n)^{1/2}. \tag{4.2}$$

In order to estimate \sum_{1} we write again

$$\sum_{1} = \sum_{0 \leq k/n < x - \delta + (1/n)} + \sum_{x - \delta + (1/n) \leq k/n \leq m/n} = \sum_{11} + \sum_{12}.$$
 (4.3)

Using Lemma 1 we have

$$\sum_{11} = \sum_{0 \leq k/n < x - \delta + 1/n} \left[f^{(r)}((k + r\theta)/n) - f^{(r)}(x) + f^{(r+1)}(x)(x - k/n) \right] p_k(nx)$$

$$\leq \sum_{0 \leq k/n < x - \delta + 1/n} \left[f^{(r+1)}(\xi_k) - f^{(r+1)}(x) \right] (x - k/n) p_k(nx)$$

$$+ \sum_{0 \leq k/n < x - \delta + 1/n} f^{(r-1)}(\xi_k) p_k(nx) r\theta/n$$

$$\leq \sum_{0 \leq k/n < x - \delta + 1/n} w_x(x - k/n)(x - k/n) p_k(nx)$$

$$+ (Mr/n) \sum_{0 \leq k/n \leq x - \delta + 1/n} p_k(nx), \qquad (4.4)$$

where $M = \sup_{0 \le t \le 2x+3} |f_{\pm}^{(r+1)}(t)|$, $k/n < \xi_k < x$ and $0 < \theta < 1$ but not the same at each occurrence.

Applying Abel transformation and (3.5), we obtain

$$\sum_{0 \leq k/n < x - \delta + 1/n} w_x(x - k/n)(x - k/n) p_k(nx)$$

$$\leq \delta w_x(\delta) \sum_{0 \leq k/n < x - \delta + 1/n} p_k(nx) + (x/n)$$

$$\times \sum_{0 \leq k/n < x - \delta} [w_x(x - k/n)(x - k/n)$$

$$-w_x(x - (k+1)/n)(x - (k+1)/n)](x - k/n)^{-2}$$

$$\leq \sqrt{\Delta(x)/n} w_x \sqrt{\Delta(x)/n} \sum_{0 \leq k/n < x - \delta + 1/n} p_k(nx) - w_x(x)/n$$

$$+ (2x/n) \sum_{1/n \leq k/n < x - \delta} w_x(x - k/n)(x - k/n)^{-2}. \tag{4.5}$$

It is easy to verify that if $n \ge 3$,

$$(2x/n) \sum_{1/n \le k/n < x - \delta} w_x(x - k/n)(x - k/n)^{-2}$$

$$\leq (8x/n) \int_{\delta}^{x} w_x(t) t^{-2} dt$$

$$= (4x/n) \int_{1/x^2}^{1/\delta^2} w_x(1/\sqrt{t})/\sqrt{t} dt$$

$$\leq (4x/n) \left[\sum_{k=1}^{n} w_x(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k} + w_x(x) \right]. \tag{4.6}$$

A substitution of (4.5), (4.6) into (4.4) yields

$$\left|\sum_{11}\right| \leq w_x(x)(4x+1)/n + (4x/n)\sum_{k=1}^n w_x(\sqrt{\Delta(x)/k})\sqrt{\Delta(x)/k} + (\sqrt{\Delta(x)/n}\,w_x(\sqrt{\Delta(x)/n}) + Mr/n)$$

$$\times \sum_{0 \leq k/n \leq x = \delta + 1/n} p_k(nx). \tag{4.7}$$

Now turn to the estimation of \sum_{12} . Write

$$\sum_{12} = \sum_{x-\delta+1/n \leqslant k/n < (m-r)/n} + \sum_{(m-r+1)/n \leqslant k/n \leqslant m/n} := \sum_{12}' + \sum_{12}''.$$
 (4.8)

Obviously

$$\left|\sum_{12}'\right| \leq (w_x(\delta) \delta + Mr/n) \sum_{x-\delta+1/n \leq k/n < (m-r)/n} p_k(nx). \tag{4.9}$$

Let

$$J_k(x) := [f^{(r)}((k+r\theta)/n) - f^{(r)}(x) + f_-^{(r+1)}(x)(x-k/n)] p_k(nx) \qquad (m-r+1 \le k \le m):$$

(i) If
$$(k+r\theta)/n \le x$$
,

$$\begin{split} J_k(x) & \leq |f_-^{(r+1)}(\xi_k) - f_-^{(r+1)}(x)| \; |x - k/n| \\ & \times p_k(nx) + f_-^{(r+1)}(\xi_k) \; p_k(nx) \; r\theta/n \\ & \leq \left[\sqrt{\Delta(x)/n} \; w_x(\sqrt{\Delta(x)/n}) + rM/n \right] \; p_k(nx). \end{split}$$

(ii) If
$$x < (k + r\theta)/n$$
, then

$$J_{k}(x) \leq \left\{ |f_{+}^{(r+1)}(\xi_{k}) - f_{-}^{(r+1)}(x)| |x - k/n| + |f_{+}^{(r+1)}(x) - f_{-}^{(r+1)}(x)| |x - k/n| + f_{+}^{(r+1)}(\xi_{k}) r \theta/n \right\} p_{k}(nx)$$

$$\leq \left\{ \sqrt{\Delta(x)/n} w_{x}(\sqrt{\Delta(x)/n}) + rM/n + \sqrt{\Delta(x)/n} |f_{-}^{(r+1)}(x) - f_{-}^{(r+1)}(x)| \right\} p_{k}(nx).$$

Hence

$$\left| \sum_{12}^{"} \right| \leq (\sqrt{\Delta(x)/n} \, w_x(\sqrt{\Delta(x)/n}) + rM/n) \sum_{(m-r+1/n) \leq k/n \leq m/n} p_k(nx) + \sqrt{\Delta(x)/n} \, |f_+^{(r+1)}(x) - f_-^{(r+1)}(x)|.$$

$$(4.10)$$

Combining (4.8)–(4.10) we get

$$\left| \sum_{12} \right| \leq (\sqrt{\Delta(x)/n} \, w_x(\sqrt{\Delta(x)/n}) + rM/n) \sum_{x - \delta + 1/n \leq k/n \leq m/n} p_k(nx) + \sqrt{\Delta(x)/n} \, |f_+^{(r+1)}(x) - f_-^{(r+1)}(x)|. \tag{4.11}$$

From (4.3), (4.7), and (4.11) it follows that

$$\left| \sum_{1} \right| \leq (4x/n) \sum_{k=1}^{n} w_{x}(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k} + w_{x}(x)(4x+1)/n$$

$$+ (\sqrt{\Delta(x)/n} w_{x}(\sqrt{\Delta(x)/n}) + rM/n) \sum_{0 \leq k \leq m} p_{k}(nx)$$

$$+ \sqrt{\Delta(x)/n} \left| f_{\perp}^{(r+1)}(x) - f_{\perp}^{(r+1)}(x) \right|.$$

$$(4.12)$$

Now consider \sum_2 . Write

$$\sum_{2} = \sum_{(m+1)/n \leqslant k/n < x - \delta - (r+1)/n} + \sum_{x+\delta - (r+1)/n \leqslant k/n \leqslant 2(x+1)} + \sum_{2(x+1) < k/n}$$

$$:= \sum_{21} + \sum_{22} + \sum_{23}.$$
(4.13)

It is evident that

$$\left| \sum_{21} \right| \le \left(w_x(\sqrt{\Delta(x)/n}) \sqrt{\Delta(x)/n} + rM/n \right) \sum_{(m+1)/n \le k/n < x + \delta - (r+1)/n} p_k(nx). \tag{4.14}$$

Similarly, if $n \ge 4r^2$,

$$\left| \sum_{22} \right| \le (16x/n) \sum_{k=1}^{n} w_{x}(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k} + w_{x}(x+3)(64x+1)/n + (w_{x}(\sqrt{\Delta(x)/n}) \sqrt{\Delta(x)/n} + rM/n) \sum_{x+\delta - (r+1)/n \le k/n \le 2(x+1)} p_{k}(nx).$$

$$(4.15)$$

Applying Lemma 2, we have

$$\sum_{23} = O(e^{-cn}). \tag{4.16}$$

Combining (4.13)–(4.16), we get

$$\left| \sum_{2} \right| \leq (16x/n) \sum_{k=1}^{n} w_{x}(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k} + w_{x}(x+3)(64x+1)/n$$

$$+ (w_{x}(\sqrt{\Delta(x)/n}) \sqrt{\Delta(x)/n} + rM/n)$$

$$\times \sum_{(m+1)/n \leq k/n \leq 2(x+1)} p_{k}(nx) + O(e^{-cn}). \tag{4.17}$$

Finally, collecting (4.1), (4.2), (4.12), and (4.17), we obtain

$$\left| \sum_{1} \right| + \left| \sum_{2} \right| + \left| \sum_{3} \right| \leq w_{x}(\sqrt{\Delta(x)/n}) \sqrt{\Delta(x)/n} + rM/n$$

$$+ (20x/n) \sum_{k=1}^{n} w_{x}(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k}$$

$$+ w_{x}(x+3)(68x+2)/n + (3/2) \sqrt{\Delta(x)/n}$$

$$\times |f_{+}^{(r+1)}(x) - f_{-}^{(r+1)}(x)| + O(e^{-cn})$$

$$\leq (21 \Delta(x)/n) \sum_{k=1}^{n} w_{x}(\sqrt{\Delta(x)/k}) \sqrt{\Delta(x)/k}$$

$$+ (3/2) \sqrt{\Delta(x)/n} |f_{+}^{(r+1)}(x) - f_{-}^{(r+1)}(x)| + O(1/n).$$

Observing Lemma 2, here the sign "O" is independent of x, n, and f on the interval [0, A].

Q.E.D.

REFERENCES

- O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards Sect. B 45 (1950), 239-245.
- J. Gróf, A Szasz Ottó-féle operátor approximaciós tulajdonsagairól, Mat III, Oszt. Közl. 20 (1971), 35-44.
- 3. T. HERMANN, Approximation of unbounded functions on unbounded interval, *Acta Math. Acad. Sci. Hungar.* 29 (1977), 393-398.
- 4. Fuhua Cheng, On the rate of convergence of the Szász-Mirakyan operator for bounded variation, J. Approx. Theory 40 (1984), 226-241.
- 5. Fuhua Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory 39 (1983), 259-274.
- 6. XIEHUA SUN, On the convergence of the Szász-Mirakyan operator for functions of bounded variation of order p, J. Hangzhou Univ. 13 (1986), 409-417. [Chinese]
- XIEHUA SUN, On the rate of convergence of Fourier series for functions of HBMV, J. Approx. Theory 49 (1987), 289-299.